Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

نویسنده

  • K.Ranjith kumar
چکیده

The paper proposes a novel method for improving performance of a Three Phase wound rotor induction motor using an indirect reactive current control scheme in the rotor. A 3 phase VSI with a dynamic capacitor is connected in the rotor circuit for controlling the reactive current in the rotor. The dynamic capacitor is an Hbridge switch with a capacitor in which the duty ratio of the Hbridge circuit is varied in order to change the capacitance value dynamically. The proposed technique is simulated in MATLAB 7.6 / Simulink environment. The result that obtained from the proposed method is compared with secondary impedance control scheme and the performance parameters such as the torque, power factor and efficiency are obtained. In addition to improving performances, as the proposed method uses only one capacitor in the rotor where as against three capacitors are used in the rotor impedance control scheme. The result has shown improved performance and cost effective by the proposed scheme. General Terms Performance, Verification, Comparison

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of Wound Rotor Induction Motor by Dsp Based Rotor Dynamic Capacitor Control

The paper presents a novel secondary reactance control technique in the rotor circuit of a three phase wound rotor induction motor (WRIM). The problem associated with the conventional rotor capacitive reactance control is the demand of exceptionally large capacitance requirement for enhancing the performance of the motor in wide operating range. In the proposed technique, a three phase bridge r...

متن کامل

Artificial Neural Network Based Rotor Capacitive Reactance Control for Energy Efficient Wound Rotor Induction Motor

Problem statement: The Rotor reactance control by inclusion of external capacitance in the rotor circuit has been in recent research for improving the performances of Wound Rotor Induction Motor (WRIM). The rotor capacitive reactance is adjusted such that for any desired load torque the efficiency of the WRIM is maximized. The rotor external capacitance can be controlled using a dynamic capacit...

متن کامل

Comparison of MRAS Based Rotor Resistance Estimator Using Reactive Power and Flux Based Techniques for Space Vector PWM Inverter Fed Induction Motor Drives

The performance of Vector Controlled Induction Motor drive depends on the accuracy of rotor resistance which will vary with temperature and frequency. The MRAS approach using reactive power and flux as a state variable for rotor resistance estimation makes MRAS computationally simpler and easy to design. In this paper, Rotor Flux based MRAS (RF-MRAS) and Reactive Power based MRAS (RP-MRAS) for ...

متن کامل

A Novel MRAS Based Estimator for Speed-Sensorless Induction Motor Drive

In this paper, a novel stator current based Model Reference Adaptive System (MRAS) estimator for speed estimation in the speed-sensorless vector controlled induction motor drives is presented. In the proposed MRAS estimator, measured stator current of the induction motor is considered as a reference model. The estimated stator current is produced in an adjustable model to compare with the measu...

متن کامل

Performance Improvement of a Slotted Solid Rotor Induction Motor with High Temperature Superconder Coating

This paper analyzes an induction motor with high temperature superconducter (HTS) coated slotted solid rotor. By slotting the solid rotor, the electromagnetic torque near synchronous speed will increase but the starting torque will decrease. To improve starting torque, rotor slots are coated with HTS materials. Using HTS material vary the rotor resistance to great extends in starting step and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010